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Transmission regimes of periodic nonlinear optical structures
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We investigate the input-output transmission regimes of optical structures with periodic nonlinear index. By
deriving an analytical model from the Maxwell equations, we analyze the physical processes responsible for
multistable and stable behavior. The threshold condition that separates multistable and stable transmission
regimes is found exactly within the underlying model. We also derive analytical expressions for the limiting
transmitted intensity in the stable regime and for the transmittance in the multistable regime in terms of optical
wavelength and material parameters.

PACS number~s!: 42.65.Pc, 42.79.Dj
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Nonlinear periodic optical structures exhibit a respon
which is simultaneously wavelength- and intensi
dependent. The rapid transformation between states of
and high transmittance and the hysteresis in the input-ou
power relationship arise from the presence of optical bis
bility @1#. These physical processes make the nonlinear p
odic structures be promising building blocks for function
multiwavelength photonic systems. Application areas
bistable nonlinear gratings include optical signal process
@2–4#, memory and logic@3#, power limiting @4#, bistable
lasing @5#, and beam reshaping@6#.

Optical gratings are realized by modulating periodica
the linear refractive index. A number of entirely new app
cations are enabled if not only the linear, but also the n
linear, components of the refractive index can be mana
@7#. These structures may exhibit stable limiting behavior
their input-output transmission characteristic: the transmi
intensity is clamped at the asymptotic limiting value and
switching to a state of higher transmittance takes place. T
behavior, at once highly nonlinear yet stable, is conducive
all-optical limiting @7#, sensor and personnel protectio
logic, analog-to-digital conversion, and all-optical subtra
tion @8#. These concepts and applications are effective
both coherent and noncoherent optical signals.

Stable and bistable limiting regimes of nonlinear perio
structures are separated by a threshold that depends on
terial parameters and optical wavelength. This threshold
been widely studied for a nonlinear Fabry-Perot e´talon @9#,
multilayer structures@10,11#, and cascading materials bas
on backward second-harmonic generation@12#. In Fabry-
Perot structures, the threshold for bistability was found
terms of the resonator finesse and nonlinear coefficient of
medium@13#. Li et al. gave the stability condition for non
linear distributed feedback structures in terms of transmi
intensity @14#. He et al. suggested that the stability boun
aries cannot in general be described by a simple relations
but that low intensity states should yield stable solutions
any kind of structure@15#.

*Present address: Department of Mathematics, McMaster Uni
sity, Hamilton, Ontario, Canada L8S 4K1.
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In this Rapid Communication we describe a revolutiona
way to achieve true all-optical limiting in the optical stru
ture by periodic management of the Kerr nonlinearity. Mo
over, we identify the exact analytical expression for the li
iting intensity and for stability boundary separating the sta
from the multistable transmission regime.

We investigate a particularly promising periodic optic
structure that consists of alternating layers with matched
ear refractive indices but different~positive versus negative!
Kerr nonlinearities. The nonlinear periodic structure
shown in Fig. 1. The propagation of two noncoherent lig
waves of frequencyv is described by the Maxwell equation
@16#,

~U11U2!zz1k2@11Dn~z!I ~z!#~U11U2!50. ~1!

HereU1(z) represents the forward~incident! wave,U2(z)
the backward~reflected! wave, and the local intensity of ligh
is I (z)5uU1(z)u21uU2(z)u2, found by averaging over the
uncorrelated statistical ensemble@16#. The wave vectork and
the optical wavelengthl ~where k52pn0 /l) are given
within the linear theory ask5vn0 /c, wherec is the speed of
light in vacuum andn0 is the linear index. The normalize
nonlinear correctionDn(z)5nnl(z)/n0 depends on the Ker
coefficientnnl(z). The Kerr coefficient may be positive o
negative depending on the medium and the wavelength@17#.

r-
FIG. 1. Scheme of the periodic optical structure consisting

alternating layers with the same linear refractive index and differ
Kerr nonlinearities.
R4536 ©2000 The American Physical Society
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We first use a scattering matrix approach@18#. We assume
that the local intensityI (z) is constant along each individua
layer and absorption is negligible. The forward- a
backward-propagating waves can then be represented ex
itly at each layer~see Fig. 1! as

U6~z!5H aj
6e6 ikz6 ikDnnl1I j (z2 j L), layer I

bj
6e6 ikz6 ikDnnl2I j (z2 j L), layer II,

~2!

where I j5uaj
1u21uaj

2u2 is the intensity,L is the period of
the grating,N is the number of periods, and 0< j <(N21).
The scattering matrix betweenaj

6 and aj 11
6 can be found

from Eqs.~1! and~2! by matching the amplitudes and slop
of the electric field at the interface between two adjac
layers,

S aj 11
1 eikL

aj 11
2 e2 ikLD 5M21M12S aj

1

aj
2D , ~3!

where the scattering matrix, e.g.,M12, is

M125
1

2 F ~11k1 /k2!eik1L/2 ~12k1 /k2!e2 ik1L/2

~12k1 /k2!eik1L/2 ~11k1 /k2!e2 ik1L/2G ,
and k1,25k(11Dnnl1,2I j ). If the nonlinearity is small, i.e.,
uDnnl1,2uI j!1, the amplitudesA6(zj )5aj

6 defined atz5zj

5 j L vary slowly across the adjacent layers. We can the
fore assume

lim
L→0

A6~zj 11!2A6~zj !

L
5

dA6

dz

and derive coupled-mode equations in this slowly vary
amplitude limit,

i
dA1

dz
5kDn̄nl~kA2e23ikL/22A1!~ uA1u21uA2u2!, ~4!

i
dA2

dz
5kDn̄nl~2kA1e3ikL/21A2!~ uA1u21uA2u2!, ~5!

whereDn̄nl5(nnl11nnl2)/(2n0) is the average normalize
nonlinear index andk is a product of variance of the nonlin
ear index and the resonance factor,

k5Unnl12nnl2

nnl11nnl2
U sin~kL/2!

kL/2
. ~6!

Exact resonance between the wave and the periodic g
ing occurs whenkL5p, i.e., l52Ln0. The coupled mode
model ~4! and ~5! for exact resonance and matched fluctu
tions of the nonlinear index~i.e., nnl152nnl2) was consid-
ered recently@7#. The model derived herein has wider app
cability and describes wave propagation in the gene
nonlinear periodic structure with two alternating layers o
side of the exact resonance case.

The nonlinear coupling between forward and backw
waves is described by thek terms in Eqs.~4! and~5!. These
terms provide stable, limiting behavior fornnl152nnl2,
whenk→`. The other right-hand-side terms in Eqs.~4! and
lic-
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~5! are associated with oscillatory behavior and, correspo
ingly, with multistability. Multistability finds its origins in
the development of the cavity roundtrip phase between c
ditions of destructive and constructive interference as the
erage index evolves with intensity. The transition to mu
stability takes place when the self-coupling~destabilizing!,
oscillatory terms overwhelm the mutually coupling~limiting!
terms. Here, we show that the threshold condition betw
these two regimes is given byk51, i.e., the stable limiting
behavior occurs for

Unnl12nnl2

nnl11nnl2
U sin~kL/2!

kL/2
>1. ~7!

The coupled system~4! and ~5! exhibits conservation of
the energy flow through the optical structure,

uA1~z!u22uA2~z!u25I out , ~8!

whereI out5uA1( l )u2 is the transmitted intensity at the righ
end of the structure, andl 5NL is the total length of the
structure. There is no radiation incident on the structure fr
the right, which specifies the boundary condition:A2( l )
50.

We show in Fig. 2 the transmitted (I out5uA1( l )u2) versus
incident (I in5uA1(0)u2) intensity for two different structure
lengths at exact resonancekL5p. The nonlinear indices are
specified asnnl150.01 andnnl250.00 for two solid curves,
where k52/p. This is the multistability regime when th
transmitted intensity oscillates between the values de
mined by minimum and maximum transmittance,

T512UA2~0!

A1~0!
U2

. ~9!

The maximum transmittance appears whenA2(0)50, so
that Tmax51. The minimum transmittance is defined by th
condition dA2(0)/dz50, whenA2(0)5kA1(0)e3ikL/2 so
that Tmin512k2. Whenk50, e.g., atnnl15nnl2, the opti-
cal structure is homogeneous for all intensities andI out
5I in . The greater is the parameterk, the wider is the area
between oscillations in the input-output transmission char
teristics. We show in Fig. 2 that the period of the multistab
oscillations~measured in terms ofI in) becomes smaller for

FIG. 2. Multistable and stable regimes of the nonlinear perio
structures atkL5p.
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longer structures~whenN grows!. As a result, more possibl
transmission levels are present within a given range of
incident intensity.

Whenk reaches 1,Tmin vanishes. This marks the onset
true, stable optical limiting. In the regionk>1, the cross-
coupling of two waves dominates over the phase-related
cillations and the multistability regime is replaced by t
stable limiting transmission regime. We show the stable l
iting behavior by a dashed curve in Fig. 2 for the parame
nnl150.015,nnl2520.005, whenk54/p.

In order to find the limiting value for transmitted intensi
and to characterize the features of the multistability regim
we construct exact solutions to Eqs.~4! and ~5!. First, we
rescale the distancez by Z5kDn̄nlz and substitute the am
plitudesA6(z) in the polar form,

A1~z!5AI out1Qei (F1C), ~10!

A2~z!5AQei (F13kL/2). ~11!

Here Q(Z) and F(Z) are the intensity and the comple
phase of the reflected wave, respectively, andC(Z) is the
phase mismatch between the incident and reflected wa
The coupled system~4! and ~5! reduces to the following
form:

dQ

dZ
522~ I out12Q!AQ~ I out1Q!k sinC, ~12!

dC

dZ
5~ I out12Q!F22

I out12Q

AQ~ I out1Q!
k cosCG . ~13!

The boundary conditions areQ(L)50 and C(L)5p/2,
whereL5kDn̄nll . The latter condition follows from Eq.~13!
asQ(L) vanishes and from Eq.~12! asQ(Z) has a negative
slope nearZ5L. Subject to this boundary condition, we fin
the integral of Eqs.~12! and ~13! in the form,

k cosC5A Q

I out1Q
>0. ~14!

Using this relation the system~12! and ~13! can be reduced
to the single equation,

FIG. 3. Normalized limiting value of the output powerI l im /I 0

as a function of the inverse variance of the nonlinear indexG at
kL5p.
e

s-

-
r:

,

es.

dC

dZ
5I out@11k2 cos2 C#, ~15!

which can be further integrated. It is obvious from Eqs.~14!
and ~15! that C(Z) always increases fromC(0) to C(L)
5p/2. However, since cosC is non-negative, the phas
C(Z) may have jumps fromC5p/2 to C52p/2 at the
points inside the interval 0,Z,L, where Q(Z) vanishes.
Only the fundamental branch of solutions has no jumps
this branch is unique in the limiting transmission regime.

The exact solution forQ(Z) follows from Eqs.~14! and
~15! in the form

Q~Z!5
k2I out sin2@A11k2I out~L2Z!#

11k2 cos@2A11k2I out~L2Z!#
. ~16!

We show from Eq.~16! that the two transmission regime
are separated by the conditionk51.

In the multistable regime,k,1, the solution~16! is non-
singular for any value ofI out . The transmittanceT can be
found from Eqs.~9! and ~16! in the form

T5
11k2 cos@2A11k2I outL#

11k2 cos2@A11k2I outL#
. ~17!

The points of maximum transmittance@Tmax51, Q(0)50#
are given by the roots

I out5I n5
pn

A11k2L
, n50,1,2, . . . . ~18!

The distribution for the reflected waveQ(Z) has exactlyn
nodes across the optical structure within the parameter ra
I n<I out,I n11. For each node, the phaseC(Z) jumps from
1p/2 to the left of the node to2p/2 to the right. The points
of minimum transmittance@Tmin512k2, dQ(0)/dZ50#
are located exactly in the middle of each interval (I n ,I n11).

In the stable regime,k>1, the distribution of the reflected
waveQ(Z) becomes singular atI out>I l im , where

I l im5
p

4A11k2L
F11

2

p
arcsinS 1

k2D G . ~19!

FIG. 4. Limit transmitted powerI l im as a function of the wave-
length ratiol/(Ln0).
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At the limiting value, I out5I l im , the distributionQ(Z) di-
verges asZ→0 so thatI in→`. True optical limiting is there-
fore achieved: the transmitted intensity is bounded by
limiting value irrespective of the incident power~see the
dashed curve in Fig. 2!.

When n̄nl→0, the limiting intensity approaches th
asymptotic value~see also@7#!,

lim
n̄nl→0

I lim5I 05
pn0

4Nunnl12nnl2usin~kL/2!
. ~20!

We plot in Fig. 3 the normalized limiting intensity (I l im /I 0)
as a function ofG at the exact resonancekL5p, whereG is
the inverse variance of the nonlinear index given by

G5Unnl11nnl2

nnl12nnl2
U. ~21!

When the inverse varianceG is small, the normalized limit-
ing intensity is smaller than 1. WhenG approaches the
threshold boundary~7!, i.e.,G52/p for the exact resonance
the normalized intensity approachesA2. Thus, the limiting
d

o,

on
s

intensity remains within 40% of its asymptotic valueI 0 for
any value of the material parameters.

The stable limiting regime of the periodic optical structu
is supported by a low average Kerr coefficient throughout
structure accompanied by a high layer-to-layer variance.
facilitated by close proximity to the Bragg resonance. Wh
the light wavelengthl deviates from the exact resonancel
52Ln0, the stable regime breaks down. We illustrate t
feature in Fig. 4 by plotting the limiting transmitted intensi
I l im ~19! versus the wavelength ratiol/(Ln0) for two values
of G: G50 ~dashed curve! and G51/p ~solid curve!. The
stable behavior of the nonlinear periodic structure is affec
weakly by deviation of the light wavelength to longer-tha
resonance region, while shorter-than-resonance wavelen
quickly undergo transitions to the multistable regime~see
Fig. 4!.

In conclusion, we have elaborated and explained the c
ditions for stability and true asymptotic limiting in nonlinea
periodic structures. Stable all-optical limiting is a high
promising avenue towards optical signal processing.
have derived a threshold condition that predicts, in terms
the material parameters and optical wavelength, wheth
given structure is stable or multistable.
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